Quantum computing is a hot topic for machines that usually operate at lower temperatures than interstellar space. In essence, by using some counterintuitive phenomena in quantum mechanics, it’s possible to perform operations difficult to run on your standard digital computer. These ‘operations’ usually refer to complicated problems that become exponentially harder as the scale of the problem gets larger. Examples of these include maximising the return from a financial portfolio, simulating new materials accurately, and more powerful tools for drug discovery. As these are highly profitable areas key to many key sectors of the economy, the quantum computing market is estimated to grow to $1.765 billion by 2026.
In the past, researchers relied on the rapid improvement of high-performance computing (HPC) to tackle these problems. But more recently, we have begun to reach the limit of what our best supercomputers can do. For fifty years, Moore’s law predicted that the number of transistors we can fit on a chip would double every 2 years (this count is a broad indicator of how powerful a computer of a given size could be). This can’t continue forever, and there are already signs that we’re close to the limit. When transistors become too small, they cease to function. This limit on how small we can make a transistor is caused, ironically enough, by quantum effects.
Unfortunately, quantum computing is hard. The quantum mechanics that allows these devices to operate differently from digital computers also makes them extremely sensitive to noise. Noise comes about from vibrations, temperature fluctuations and electromagnetic waves. This interferes with the quantum state of the computer, causing it to make errors. For any meaningful computation, the errors must be corrected and to do this requires much of the quantum computer’s resources (qubits).
A small start-up based in White City, London is pioneering a novel solution to overcome this problem. Orca Computing is using light (photons) to build “the world’s first quantum computing platform built on an optical fibre”. Compared to the conventional approach used by Google & IBM, using photons is innovative since they’re more tolerant to noise and can achieve much faster clock speeds (the time taken to perform a single processing cycle).
Anyone who’s struggled to use breakout rooms in a Zoom meeting will tell you that it doesn’t matter how good your computer is if you can’t make it work. This is also true for quantum computing. Without the software needed to operate these quantum devices, they would be greatly limited in what they could do. Another UK start-up from the University of Cambridge, Cambridge Quantum Computing (CQC), specialises in developing quantum software. Its ambitious projects include quantum chemistry, quantum machine learning and quantum augmented cybersecurity. CQC has operations in Europe, the US and Japan, and in December 2020, acquired $45 million from investors to further accelerate commercialization.
In the quantum computing space, the UK is home to world-leading academics, a growing number of ambitious start-ups and a government eager to facilitate them both. A mix of UK government and industrial funding has committed over £1Bn over the next decade to establish the UK as a leader in quantum technologies. This includes a £93 million investment to establish the National Quantum Computing Centre (NQCC) focussed on 4 key areas. These include scaling quantum hardware and developing quantum software & algorithms. Both will be vital in realising the potential advantages of quantum technologies. Similar government focus can be seen in the US, where last year alone, a federal budget of $579 million was allocated to quantum information science R&D.
The UK is also in a good position to leverage these quantum technologies in industry. Being home to a world-leading financial sector, an advanced aerospace sector, and an established pharmaceuticals industry, there’s a strong interest in quantum computing.
Nowadays, digital computers inside our electronics come in a range of shapes and sizes. The processor powering your phone has very different requirements to the processor in a powerful gaming PC which is itself very different from the high-performance computers (HPC) used in analysing the human genome. The future of quantum computing may follow a similar path where there may be a range of different quantum computers each designed to tackle specific needs of specific problems. In any case, these technologies will add great value to the economy, and change the way humanity tackles its most complex problems. As Science Minister Chris Skidmore put it “industry is turning what was once a futuristic pipedream into life-changing products.” Quantum computing will be a fundamental shift in the way we approach these problems, to discover all its applications will take imagination and genius in equal measure.
In states where maintaining power and control over society is paramount to regime survival, AI algorithms are likely to serve as a method of strengthening autocrats’ grip over the state. Disregard for freedom of information, privacy, and human rights, increases the potential for the exploitation of AI tools by authoritarian leaders.
Since the COVID-19 pandemic, the atmosphere around workplace wellbeing has shifted. Bosses are now talking about mental health, throwing in perks like meditation apps, mindfulness gigs and mental health campaigns. But hey, relying on these goodies will put us in a good headspace at work right? Not quite!
Thousands of Nigerians gathered in Niamey, their capital, to celebrate the expulsion of the French military and the French ambassador Sylvain Itté, from the West African state.
Following regulator approvals in the UK on Monday the 21st of August 2023 and effective approval in the US, Broadcom confirmed that it plans to officially acquire VMware for $61bn on October 30th, 2023.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
0 Comments